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Expe r imen ta l  data  obtained for  f i lm and mixed condensat ion of sa tura ted  a i r  vapor s  (N 2, O 2, 
Ar) [1] is c o m p a r e d  with the r e su l t s  of s tudies [11-13] of the condensat ion of pure  sa tura ted  
w a t e r  vapors .  

An ana lys i s  of the e x p e r i m e n t a l d a t a  obtained by the author  [1] in a study of the condensat ion of 
sa tu ra ted  a i r  vapor s  (N 2, O 2, Ar) on the su r face  of a ve r t i c a l  b r a s s  tube (d = 22 / 16 m m ,  H = 0.94 m) 
showed that the coeff ic ients  of heat  t r a n s f e r  for  f i lm condensat ion in the range  of Reynolds numbers*  f rom 
694 to 1900 a r e  located above and pa ra l l e l  to the theore t ica l  Nusse l t  cu rve  (Fig. 1).} The exper imen ta l  
data r e f e r r i n g  to drop condensat ion and, in par t ,  to mixed condensation,  we re  bunched around an empi r i ca l  
cu rve  which is desc r ibed  by the equation 

a ( ~2g .~ 1/3 3600~D~xg (1) 
-~- \ _ _ ~ ]  = 420 4G 

As is  c l e a r  f rom Fig. 1, the expe r imen ta l  data for  f i lm condensat ion at Pk = 6 a tm a re  located c [ose r  
to the curve  exp re s s ing  the theore t ica l  Nusse l t  equation but in the d i rec t ion  of increas ing  values of the rma l  
flux (7165, 8190, 10,900, 12,400 W / m 2 ) ,  as in the case  of condensat ion at 4 a tm (6500, 8800, 8900, 9500, 
13,370 W / m 2 ) .  

The equation of the r e su l t an t  cu rve  has  the fo rm 

T \ - ~ - ]  3600zD~tg 

The d imens ion less  re la t ions  in Eq. (2) follow f rom the equation 

-~- \ - ~ - - ]  = 1.468(Re)-', 3, (3) 

obtained as the r e s u l t  of expe r imen ta l  [8] and theore t ica l  [4] s tudies of fluid mot ion in a condensate  film. 

We point out that the i nc r ea s e  of 50% in the c o r r e c t i o n  coeff ic ient  of Eq. (2) in compar i son  with that 
of the Nusse l t  equation - 2.2 instead of 1.47 - resul ted  f rom visual  observa t ions  of wave flow in the con-  
densa te  f i lm (N 2, 02, Ar) and f rom its c h a r a c t e r i s t i c  Reynolds number s  f rom 694 to 1900 calculated f rom 

the express ion  

x = Re 46 (4) 
3600aDlxg 

*The Reynolds n um ber  is re la ted  to the annular  c r o s s  sect ion of the flow channel of the condensing vapor.  
~The dashed cu rve  of Ki rkbr ide  [8] and Badger  [14] plotted in Fig. 1 sa t i s f i e s  the conditions for  turbulent  
flow of the f i lm at  Re > 2100 and is  outside the l imi ts  of our  expe r imen t s .  
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Fig. 1. Behavior  of heat t r ans fe r  during condensation 
of a i r  vapors  (N2, 02, Ar) in the coordinates  of Ki rk-  
bride [8] and Gudymchuk-Kons tan t inov  [4], x = Re 
= 4G / 3600 ~I>~g, y = (~ / k) (~2g / 72)1/3: a) exper imen-  
tal curve f rom Eq. (1); b) experimental  curve from Eq. 
(2); c) theoret ical  Nussel t  curve;  d) f rom Kirkbride,  
y = 0.0077 x~ 1) Pk = 1.1 arm; 2) 1.25 arm; 3) 1.50 atm; 
4) 2 atm (drop condensation); 5) 3 arm (mixed conden- 
sation); 6) 4 arm (film condensation). 

This is in agreement  with the work of Kapitsa [2] devoted t o  a theoret ical  analysis of wave motion in a 
fluid film on a ver t ica l  tube and with experimental  studies [1, 3-13] on heat t r ans fe r  during condensation 
of pure saturated wate r  vapors  on ver t ical  tubes and, specificaUy, of the wave mode of film motion on a 
ver t ica l  wall [4-9]. 

Thus, according to [2], breakdown of the laminar  nature of film flow ar i ses  during its transit ion into 
wave flow {Fig. 2) with the average film thickness being 7% less than that for the wave- f ree  laminar  mode 
and the average value of 1 / 6  being 21% grea te r .  Therefore ,  the value of ~ for the wave mode of film flow 
is g rea te r  than that calculated by the Nussel t  formula 

( r72k3 ) i/4 
0.943 (5 )  

~ (t~ - -  tw) H 

by the same amount, which this formula does not take into account. This is in agreement  with the es t imates  
of Kutateladze [5] and McAdams [7], according to which the experimental  values of o~ are  higher by 20%, on 
the average,  than the theoret ical  values because of the unstable mode of fluid film motion on a ver t ical  

\J 

I 

Fig. 2. Distribution of velocit ies 
for  wave mode of fluid flow in a 
film according to the approximate 
theory of Kapitsa [2] [k) constant 
phase velocity; m) thickness of 
flow layer;  a0) average thickness 
of flow layer;  ~) wavelength]. 
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Fig. 3. Compar ison of experimental  data 1, 2, 3 [1] for  
condensation of a i r  vapors  (see Fig. 1 for notation)with 
experimental  data f rom studies of the condensation of 
water  vapors  [4) Fragen,  tube, H = 2.4 m; 5) [11], tube, 
H = 3.6 m; 6) [12], tube, H = 6 m; 7) [13], plate, H 
= 0.114 m]. 

wall. In fact,  a mode is observed,  as a rule,  inwhich the film thickness var ies  periodically at each given 
point [2]. A condensate film on a ver t ica l  wail pulsates.  

F r o m  data in [6], the extent of the wave- f ree  zone of laminar  flow for a condensate film of water  
vapor  is charac te r i zed  by a value Re _< 30, and wave flow develops in proport ion to the increase  in Re 
values to 2000-2500. The co r rec t ion  factor  in the Nussel t  formula,  according to the data in [6], var ies  
f rom 1 at Re = 30 to ~1.6 at Re = 2000-2500. F o r  ca ieula t ionofheat  t ransfer  during condensation of water  
vapor  on ver t ica l  tubes, it is recommended [6] that the following relat ion be used for 30 < Re < 2000-2500: 

_~ ( ~t~gv 2 ])1/3_ 1,05Re -2/9. (6) 

F r i edman  and Miller recommend [9] that the mode of film motion for Re from 25 to 1500 be called 
pseudolaminar .  

The discussion above was the basis  for  the conclusion that the general  Nusselt  formula for laminar  
film flow at Re < 2000 was also valid for  the calculation of the hea t - t r ans f e r  coefficient for the condensa-  
tion of a mixture  of saturated vapors  (in the absence of noncondensing gases) ,  the components of which 
a re  soluble to an unlimited extent in the condensate formed.  In o rder  to confirm the co r r ec tnes s  of this 
conclusion,  a compar i son  of the data for the condensation of mixtures  of a i r  vapors  (N 2, 02, Ar) with 
published resul t s  [11, 12] for the condensation of pure saturated water  vapors  on ver t ica l  tubes is presented 

in Fig. 3. 

Plotted in Fig. 3 in the coordinates  of the vers ion of the analysis  given above [8, 4] are  83 exper i -  
mental  points f rom the authors mentioned* on the condensation of water  vapor,  including 14 points for  a 
ver t ica l  plate [13]. Also plotted are  32 points represent ing data obtained by the author [1] for  the condensa-  
tion of saturated a i r  vapors  (N2, O 2, Ar). Of the points r e fe r r ing  to film condensation, nine are located 
between the Nussel t  curve (dashed curve) and the curve drawn paral le l  to it charac te r iz ing  the spread of 
the 83 exper imenta l  points specified. 

The experimental  data relat ing to drop condensation lie higher  in accordance with their  hea t - t r ans fe r  
coefficient values f rom 4600 to 8800 W / m  2- deg. 

Some dispers ion  of the experimental  points which is observed in Figs.  1 and 3 may be caused to a 
known extent by the difficulties of measur ing  smal l  tempera ture  differences from 0.86 to 5.3~ in our 
experiments .  

F igure  3 indicates that a calculation of the hea t - t r ans fe r  coefficient for  Re < 2000 can be made from 
Eq. (2) with acceptable  prac t ica l  accuracy  for film condensation on the surfaces  of ver t ical  tubes from a 
mixture of vapors  in the absence of noncondensing gases.  

*Comparison of exper imental  data on condensation of water  vapor on ver t ica l  tubes and theoret ical  ca lcu la -  
tions for  film condensation were  taken f rom the monograph by McAdams (translated from the English), 
Metal lurgizdat  (1961), p. 454, Figs.  13 and 14. 
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NOTATION 

is the hea t - t ransfer  coefficient, W / m  2. deg; 
is the thermal conductivity, W / m -  deg; 

# is the viscosity, N- sec/m2~ 
"y is the specific weight, N/m3;  
r is the heat of evaporation, J / k g ;  
g is the acceleration of gravity, m / s e c ;  
G is the mass flow rate of liquid, k g / h ;  
H is the hMght, m; 
D is the diameter,  m. 
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